Angular momentum transport in protostellar discs
نویسندگان
چکیده
Angular momentum transport in protostellar discs can take place either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field that threads the disc. Using semi-analytic and numerical results, we construct a model of steady-state discs that includes vertical transport by a centrifugally driven wind as well as MRI-induced turbulence. We present approximate criteria for the occurrence of either one of these mechanisms in an ambipolar diffusion-dominated disc. We derive “strong field” solutions in which the angular momentum transport is purely vertical and “weak field” solutions that are the stratified-disc analogues of the previously studied MRI channel modes; the latter are transformed into accretion solutions with predominantly radial angular-momentum transport when we implement a turbulent-stress prescription based on published results of numerical simulations. We also analyze “intermediate field strength” solutions in which both modes of transport operate at the same radial location; we conclude, however, that significant spatial overlap of these two mechanisms is unlikely to occur in practice. To further advance this study, we have developed a general scheme that incorporates also the Hall and Ohm conductivity regimes in discs with a realistic ionization structure.
منابع مشابه
Radial and vertical angular momentum transport in protostellar discs
Angular momentum in protostellar discs can be transported either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field. We present a model of steady-state discs where these two mechanisms operate at the same radius and derive approximate criteria for their occurrence in an ambipolar diffusion do...
متن کاملThe role of magnetic fields in star formation
Star formation is thought to be triggered by the gravitational collapse of the dense cores of molecular clouds. Angular momentum conservation during the collapse results in the progressive increase of the centrifugal force, which eventually halts the inflow of material and leads to the development of a central mass surrounded by a disc. In the presence of an angular momentum transport mechanism...
متن کاملTidally–induced Warps in Protostellar Discs
We review results on the dynamics of warped gaseous discs. We consider tidal perturbation of a Keplerian disc by a companion star orbiting in a plane inclined to the disc. The perturbation induces the precession of the disc, and thus of any jet it could drive. In some conditions the precession rate is uniform, and as a result the disc settles into a warp mode. The tidal torque also leads to the...
متن کاملSelf-gravitating accretion discs
— I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific di...
متن کاملProtostellar angular momentum evolution during gravoturbulent fragmentation
Using hydrodynamic simulations we investigate the rotational properties and angular momentum evolution of prestellar and protostellar cores formed from gravoturbulent fragmentation of interstellar gas clouds. We find the specific angular momentum j of molecular cloud cores in the prestellar phase to be on average 〈 j〉 = 7 × 1020 cm2 s−1 in our models. This is comparable to the observed values. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989